Relative Rate Studies of Chlorine Atoms with Crotonaldehyde and Methyl Vinyl Ketone

M. Martínez-Avilés and B. J. Finlayson-Pitts

Department of Chemistry

University of California, Irvine

Abstract

The relative rates of reactions of chlorine atoms (Cl) with two organic compounds, crotonaldehyde (CA) and methyl vinyl ketone (MVK), have been studied. Each organic compound along with Cl₂ was introduced into a 30 L Teflon bag with N₂ or air as diluent. The mixture was then photolyzed repetitively for brief periods and, after each photolysis cycle, a sample was analyzed using the analytical technique of gas chromatography-flame ionization detection (GC-FID). rate constant for the reaction of MVK with Cl was determined to be $(2.3 \pm 0.5) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Preliminary data for the reaction of CA with Cl were obtained. These relative rates and their atmospheric implications are presented.

Motivation

CCA and CMVK are considered unique chlorine-containing compounds that can serve as "markers" of chlorine atom chemistry.

Wang and Finlayson-Pitts (2001) identified CCA and CMVK as the chlorine-containing products from the chlorine atom reaction with the anthropogenic specie 1,3-butadiene.

Atmospheric Layers

- Variations are due to alterations in the chemical and physical nature of the atmosphere with altitude.
- Troposphere contains about 75% of the total mass of the atmosphere.
- Stratosphere is also called the ozone layer.

Created by M. J. Pidwirny, Department of Geography, Okanagan University College

Cl Chemistry in Coastal Areas

Created by W. Wang, Department of Chemistry, University of California, Irvine

Reactions of C1•

- Generation of Cl radical from salt
 - $NaCl + 2NO_2 \rightarrow NaNO_3 + ClNO$
- Photolysis: ClNO + $h\nu \rightarrow NO + Cl$ •
- NaC1 + N₂O₅ \rightarrow NaNO₃ + ClNO₂
- Photolysis: $ClNO_2 + h\nu \rightarrow NO_2 + Cl$
- Reactions with organics
- Abstraction
- - $RH + Cl \rightarrow HCl + R \rightarrow$
 - Addition $R_2C=CR_2 \rightarrow R_2C'-CR_2Cl$

Studied Compounds

Methyl Vinyl Ketone

Crotonaldehyde

Nonane

Experimental Apparatus

Flame Ionization Detector (FID)

- Most used detector for gas chromatography.
- Responds to compounds that produce ions and electrons when burned in a H₂-air flame.
- Insensitive toward noncombustible gases.

Relative Rate Technique

- Reference compound
 - Nonane
- Organics of interest
 - MVK
 - CA
- Ratio of rate constants

$$\ln \underbrace{ \begin{bmatrix} organic]_0 \\ [organic]_t \end{bmatrix}} = \underbrace{ \underbrace{ k_{organic}}_{k_{ref}} } \ln \underbrace{ \begin{bmatrix} reference]_0 \\ [reference]_t \end{bmatrix}}$$

Relative Rates Methodology

- Sampling
 - Prepare mixtures of reference, organic and chlorine.
- Data Collection
 - GC-FID measures the loss of organic compounds after photolysis.
- Data Analysis

Relative Rates of Methyl Vinyl Ketone *versus* Nonane

Relative Rates of Crotonaldehyde *versus* Nonane

Results of Relative Rates

Organic Compound	k_{ref} $(10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	Relative Rate k _{organic} /k _{ref}	korganic (10 ⁻¹⁰ cm ³ molecule ⁻¹ s ⁻¹)
MVK	4.8	0.49 ± 0.11	2.3 ± 0.5
CA	4.8	1.3 ± 0.5	6.0 ± 2.4

Experimental Results

y = 1.4764x + 0.00561.2 y = 1.1566x + 0.031(V) 8.0 0.4 -= 1.278x - 0.06450.2 ln(nonane) 0.2 0.4 0.8

MVK vs Nonane

CA vs Nonane

Conclusions

- The rate constant for the reaction of MVK with Cl was determined to be $(2.3 \pm 0.5) \times 10^{-10} \text{ cm}^3$ molecule⁻¹ s⁻¹.
- The rate constant for the reaction of CA with Cl was determined to be $(6.0 \pm 2.4) \times 10^{-10} \text{ cm}^3$ molecule⁻¹ s⁻¹.
- The rate constant for CA seems to be high and hence not reasonable, thus more experiments need to be done regarding this reaction.

Acknowledgments

- Finlayson-Pitts Research Group
- Office of Graduate Studies
 University of California, Irvine
- Global Change Education Program, DOE